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Abstract. We introduce judgemental theories and their calculi as a gen-
eral framework to present and study deductive systems. Judgements are
computed as functors and rules as 2-cells. As an exemplification of the
expressivity of our approach, we encode both dependent type theory
and natural deduction as examples of judgemental theories. Our analy-
sis sheds light on both the topics, providing a new point of view.
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The aim of this talk is to present a unified, category-based approach that accom-
modates diverse views on the topic of deduction. The effort required in order to
do so turns out to be extremely fruitful, and in fact it can be used, for instance,
to obtain novel results about the algebraic treatment of type constructors in
dependent type theory.

One of the motivating examples is to give a theoretical framework in which
the two following rules, which stand on very conceptually different grounds, can
be compared.

Γ ` a : A Γ.A ` B(Subs)
Γ ` B[a]

x;Γ ` φ x;Γ, φ ` ψ
(Cut)

x;Γ ` ψ
One can traditionally be found in type theory [8], the other in proof theory
[12]: despite their incredibly similar look, and the somehow parallel development
of the respective theories in the same notational framework, there are some
philosophical differences between the interpretation of the symbols above. Not
only that, but the same “`” symbol seems to regard only statements of one kind
formula in the case of (Cut), while it pertains to two - term and type - in that
of (Subs).

Of course one could argue that these different points of view are mostly philo-
sophical, and, in particular, the deep connection between proof theory and type
theory has been studied for a while: its development falls under the paradigm
that is mostly known as propositions-as-types [10], [13]. We believe that our
theory bears witness to this and, in fact, gives it a categorical backbone.

Rebooting some ideas from [7], we develop what we call judgemental theories.
Going back to the example of (Subs) and (Cut), we intuitively see how they both
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fit the same paradigm, in the sense that we could read both as instances of the
following syntactic string of symbols

♥ ` � � ` ♣
(4) ♥ ` ♠

which we usually parse as: by 4, given ♥ ` � and � ` ♣ we deduce ♥ ` ♠.
Our theory allows for a coherent expression of all such strings of symbols, and
shows how a suitable choice of context either produces (Subs) or (Cut): in the
language of judgemental theories, in fact, we will show that they are coded as
on the left and as on the right, respectively,

U̇.∆ΣU U̇× U

U

Ed.dSE Ed.dE

F
where U acts as a category for types, U̇ for terms, F for formulae, and E for
pairs of formulae, in which the first entails the second. The other letters stand
for functors regulating the relations in which all of these are.

We claim that, depending on the subject it pertains to, it is appropriate
to interpret “ ‘`” with different categorical objects, in our case, functors (most
of the time we will ask for them to be Grothendieck fibrations, though, so that
substitution in properly dealt with): the domain of the functor acts as a universe
for objects one wants to judge on, while the codomain collects contexts. We will
say, for example, that a type A is in context Γ when the functor classifying types
maps A to Γ . The functor classifying terms will need to be a different one - after
all, terms are not types - although still on the same context category.

A rule in a deductive system, then, is an object that needs to relate two
different functors, for example we need to be able to express some sort of typing
rule: if a is a term in context Γ , then its type is in fact a type in context Γ .
That is interpreted by lax commutative triangles, where one edge interprets
the premise of a rule, one interprets the consequence, and the direction of the
third edge describes the “direction” of the deduction. It is worth mentioning that
the lax aspect of it all will be key in our theory, making it 2-dimensional on a
categorical point of view.

Following this basic intuition, we show that, provided that one can combine
rules in a coherent way, (e.g. we might be interested in considering pairs of
judgements which are related in some sense, meaning that we want to be able
to compute pullbacks of these functors classifying judgements) one can exhibit
codes for all structural rules in both examples, and only starting from a few
basic judgement classifiers.

While the framework of judgemental theories and the process of formalization
of a given deductive system is purely syntactical - in the sense that we are not
interested in what a given judgement or rule should mean, only in the symbols
involved - one could wonder whether such an effort produces results close to
categorical structures traditionally used as models. This is, in fact, the case.
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– In the case of dependent types, we show how traditional categorical models
([2], [3], [5], [6], [11]) all fit into our paradigm. Moreover, properties that
were considered external, such has having dependent sums for CE-systems
[1], are internalized in our framework, so that one can quantitatively compare
different models.

– In the case of natural deduction, we explicitly provide a proof of cut elim-
ination (or normalization, see [9]) and in our setting it is particularly nice
to see its interaction with the categorical infrastructure. Moreover, in this
context, one can see how deduction trees turn into cones and cocones.

Although this introductory presentation seems to focus mainly on theories of
dependent types and natural deduction, we hope to make it clear that we have
chosen only these two specific frameworks as an example of the expressive power
of this theory. In fact, we hope to soon cover modal logic, linear logic, and more.

This exposition is based on [4].
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